Longipinane Derivatives from Stevia connata

Eugenio Sánchez-Arreola, ${ }^{\dagger}$ Carlos M. Cerda-García-Rojas, ${ }^{\dagger}$ Luisa U. Román, ${ }^{\ddagger}$ J uan D. Hernández, ${ }^{\ddagger}$ and PedroJ oseph-N athan*,t
Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 Mexico, and Instituto de Investigaciones Químico-Biológi cas, Universidad Michoacana de San Nicolás de Hidalgo, Apartado 137, Morelia, Michoacán, 58000 Mexico

Received May 3, 1998

Abstract

The hexane extracts of the roots of Stevia connata afforded three new longi pinene derivatives, longi pinane$7 \beta, 8 \alpha, 9 \alpha$-triol-1-one 7 -angelate-8-methylbutyrate (1), longipin-2-ene-7 $\beta, 8 \alpha, 9 \alpha$-triol-1-one 8,9 -diangelate (6), and longipin-2-ene-7 $\beta, 8 \alpha, 9 \alpha$-triol-1-one 8 -angelate-9-methylbutyrate (8), together with the known Iongipinane- $7 \beta, 8 \alpha, 9 \alpha$-triol-1-one 8,9 -diangel ate (2), Iongi pinane- $7 \beta, 8 \alpha, 9 \alpha$-triol-1-one 7,9 -diangelate (3), Iongipinane- $7 \beta, 8 \alpha, 9 \alpha$-triol-1-one 7,8 -diangelate (4), longi pin-2-ene- $7 \beta, 8 \alpha, 9 \alpha$-triol-1-one 7,8 -diangelate (5), longipin-2-ene-7 $\beta, 8 \alpha, 9 \alpha$-triol-1-one 7-angelate-8-methylbutyrate (12), and stigmasterol. The structures of the new compounds were determined by chemical transformations and spectral methods including 2D NMR measurements. Spontaneous intramolecular transesterifications starting from the 8-angelate-9methylbutyrate 8 provided an equilibrated mixture of the 7-angelate-9-methylbutyrate 10, the 7 -angel ate8 -methylbutyrate 12 and the starting material when stored in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ solution, while the 8,9-diangelate 6 only provided a binary mixture of the 7,9-diangelate 7 and the starting material under the same conditions. The structures of 6-8,10, and $\mathbf{1 2}$ and those of the nonisolable reaction intermediates 9, 11, and 14 were further evaluated by AM 1 semiempirical calculations.

The New World genus Stevia, comprised by ca. 230 species, is distributed from southwestern United States to central Argentina. Although its chemistry is not very uniform, the main secondary metabolites of the genus are sesquiterpene lactones, diterpenes, and longipinenes, as recently reviewed. ${ }^{1}$ Continuing the search for new substances from North American representatives of this genus, ${ }^{2-9}$ we studied the hexane extracts of the roots of Stevia connata Lag. (Compositae), a wild shrub which grows in the mountains of the state of Michoacán, Mexico.

Results and Discussion

This study afforded the new substances 1, 6, and 8. Compound 1 was isolated by HPLC. Its IR spectrum indicated the presence of a saturated ester carbonyl group ($1733 \mathrm{~cm}^{-1}$), an α, β-unsaturated ester group (1710 and $1648 \mathrm{~cm}^{-1}$), and a ketone ($1716 \mathrm{~cm}^{-1}$). The mass spectrum showed $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$at $\mathrm{m} / \mathrm{z} 416$, consistent with the molecular formula $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{6}$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals characteristic of an angelate and a methylbutyrate ester residue. The signals for the protons geminal to the oxygen atoms appeared as a doublet at $\delta 5.50(\mathrm{~J}=11 \mathrm{~Hz})$, a double doublet at $\delta 5.39(\mathrm{~J}=11$ and 3 Hz), and a doublet at $\delta 3.75(\mathrm{~J}=3 \mathrm{~Hz})$ and were ascribed to $\mathrm{H}-7, \mathrm{H}-8$, and $\mathrm{H}-9$, respectively. The position of the individual ester groups at C-7 and C-8 was determined in a HMBC experiment. The signal at $\delta 166.5$, which corresponds to the angelate carbonyl group, was correlated with the doublet at $\delta 5.50$, corresponding to H-7. Similarly, the resonance at $\delta 175.1$ which corresponds to the methylbutyrate carbonyl group was correlated with the double doublet at $\delta 5.39$ which corresponds to $\mathrm{H}-8$. Therefore, the angelate group was located at $\mathrm{C}-7$ and the methyl butyrate group at C-8. The remaining ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, given

[^0]in the Experimental Section and in Table 1, respectively, indicated the presence of the longipinene moiety ${ }^{2-9}$ in agreement with structure $\mathbf{1}$ (Chart 1).

Compound $\mathbf{6}$ was also isolated by HPLC. Its IR spectrum indicated the presence of α, β-unsaturated ester groups (1718 and $1648 \mathrm{~cm}^{-1}$), and an α, β-unsaturated ketone (1674 and $1618 \mathrm{~cm}^{-1}$). The mass spectrum showed $[M]^{+}$at m / z 430, in agreement with the molecular formula $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6}$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals characteristic of two angel ate groups. In this case, the signals for the protons geminal to the oxygen atoms appeared as a double doublet at $\delta 3.93(\mathrm{~J}=11$ and 4 Hz$)$, which became a doublet upon addition of $\mathrm{D}_{2} \mathrm{O}$, a double doublet at $\delta 5.31(\mathrm{~J}=11$ and 3 $\mathrm{Hz})$, and a doublet at $\delta 5.60(\mathrm{~J}=3 \mathrm{~Hz})$ and were assigned to H-7, H-8, and H-9, respectively. These chemical shifts, multiplicities and coupling constant values are indicative of a longipin-2-ene-7 $\beta, 8 \alpha, 9 \alpha$-triol-1-one 8,9 -diester, as it has been observed in related derivatives. ${ }^{2,6,9}$ Therefore, this new natural product is $\mathbf{6}$, in agreement with the remaining ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data given in the Experimental Section and Table 1, respectively.

Compound 8 was isolated by Si gel column chromatography. Its IR spectrum showed absorptions for a saturated ester carbonyl group ($1730 \mathrm{~cm}^{-1}$), an α, β-unsaturated ester group (1720 and $1646 \mathrm{~cm}^{-1}$), and an α, β-unsaturated ketone (1674 and $1618 \mathrm{~cm}^{-1}$). The mass spectrum showed [M$]^{+}$at $\mathrm{m} / \mathrm{z} 432$, consistent with the molecular formula $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{6}$. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of an angelate and a methylbutyrate ester residue. The signals for the protons geminal to the oxygen atoms now appeared as a doublet at $\delta 3.91(\mathrm{~J}=11 \mathrm{~Hz}$), a double doublet at $\delta 5.27(\mathrm{~J}=11$ and 3 Hz$)$, and a doublet at δ $5.50(\mathrm{~J}=3 \mathrm{~Hz})$, corresponding to $\mathrm{H}-7, \mathrm{H}-8$, and $\mathrm{H}-9$, respectively. These signals, together with the remaining ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data (see Experimental Section and Table 1, respectively), also indicate the presence of a longipin-2-ene-7 $\beta, 8 \alpha, 9 \alpha$-triol-1-one 8,9-diester.
Positional assignment of the angelate and methylbutyrate groups in 8 was ascertained according to the

Table 1. ${ }^{13} \mathrm{C}$ NMR Data of Longipinene Derivatives 1, 6, and 8 (75.4 M Hz, CDCl_{3})

carbon	$\mathbf{1}$	$\mathbf{6}^{\text {a }}$	$\mathbf{8}$
1	211.7	202.6	202.6
2	42.0	122.8	122.7
3	26.8	170.1	170.2
4	44.3	48.1	48.2
5	46.4	65.8	65.9
6	35.3	36.9	36.9
7	70.4	71.0	70.6
8	71.2	71.5	71.6
9	75.3	74.0	73.9
10	45.8	54.9	54.9
11	51.6	53.4	53.2
12	19.7	23.3	23.3
13	20.5	21.0	21.0
14	20.1	18.7	18.7
15	27.1	26.7	26.6
	Ang	Ang	Ang
1	166.5	167.0	167.2
2	127.4	127.4	126.9
3	140.3	140.5	140.1
4	16.0	15.9	15.9
5	20.7	20.7	20.4
	Mebu	Ang	Mebu
1	175.1	166.7	175.5
2	41.2	126.9	41.3
3	26.3	139.3	26.7
4	11.6	15.9	11.7
5	16.3	20.3	16.6

a Pairs of ester signals may be interchanged.
Chart 1

	R^{1}	R^{2}	R^{3}
$\mathbf{1}$	Ang	Mebu	H
$\mathbf{2}$	H	Ang	Ang
$\mathbf{3}$	Ang	H	Ang
$\mathbf{4}$	Ang	Ang	H

	R^{1}	R^{2}	R^{3}
$\mathbf{5}$	Ang	Ang	H
$\mathbf{6}$	H	Ang	Ang
$\mathbf{7}$	Ang	H	Ang
$\mathbf{8}$	H	Ang	Mebu
10	Ang	H	Mebu
12	Ang	Mebu	H

13

following findings. Compound 8, was stable in solvents like hexane, CHCl_{3} or EtOAc. However, when left in 3:2 $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ solution, it underwent intramolecular transesterification to afford 10, 12, and starting material 8. Diester $\mathbf{1 2}$ was isolated by us from Stevia porphyrea, and the positional assignment of the ester residues confirmed ${ }^{8}$ by selective alkaline hydrolysis of the methylbutyrate residue. Therefore, the structures of $\mathbf{8}$ and $\mathbf{1 0}$ follow from the transesterification process.

Figure 1. AM 1 semiempirical structures of intermediates $\mathbf{9}, \mathbf{1 1}$, and 14.

Compounds $\mathbf{1 0}$ and $\mathbf{1 2}$ were separated by HPLC and left in 3:2 $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ solution as was done with 8 . After 2 weeks, diester 8 yielded a mixture of 8 (58\%), 10 (37\%), and 12 (5\%), while diester 10 gave a mixture of 8 (52\%), $10(38 \%)$, and 12 (10%), and diester 12 yielded a mixture of 8, 10, and 12 but in 18, 13, and 69%, respectively, indicating that in fact there is an equilibrium among the three diesters but that diester $\mathbf{1 2}$ takes longer to equilibrate than $\mathbf{8}$ or $\mathbf{1 0}$.
In order to shed light on these findings, the geometry of 8, 10, and 12, as well as that for nonisolable intermediates 9 and 11, were minimized using the MMX ${ }^{10}$ and SYBYL ${ }^{11}$ force fields and then cal culated at the AM 1 semi-empirical level. ${ }^{12,13}$ The minimized structures of the intermediates are depicted in Figure 1. The values for intermediates 9 $\left(\Delta \mathrm{H}_{\mathrm{f}}=-227.5 \mathrm{kcal} / \mathrm{mol}\right)$ and $\mathbf{1 1}\left(\Delta \mathrm{H}_{\mathrm{f}}=-226.6 \mathrm{kcal} / \mathrm{mol}\right)$, in comparison with those for structures $8\left(\Delta \mathrm{H}_{f}=-229.0\right.$ $\mathrm{kcal} / \mathrm{mol})$, $\mathbf{1 0}\left(\Delta \mathrm{H}_{\mathrm{f}}=-226.5 \mathrm{kcal} / \mathrm{mol}\right)$ and $\mathbf{1 2}\left(\Delta \mathrm{H}_{\mathrm{f}}=\right.$ $-225.6 \mathrm{kcal} / \mathrm{mol}$), predict that longipin-2-ene- $7 \beta, 8 \alpha, 9 \alpha$-triol-1-one diesters can undergo intramolecular transesterification, and that the orientation the oxygen atoms at C-7 and $\mathrm{C}-8$ is pseudo-equatorial while at $\mathrm{C}-9$ it is pseudo-axial, in agreement with an early conformational analysis based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of longipin-2-ene- $7 \beta, 8 \alpha, 9 \alpha$-triol-1-one derivatives. ${ }^{14}$ Therefore, ester migration from C-8 to C-7 involves a trans-diequatorial intermediate (9), while migration from C-9 to C-8 involves a cis-equatorial - axial intermediate(11) (Figure 1). The fact that diester 12 takes longer to equilibrate than $\mathbf{8}$ and $\mathbf{1 0}$ may be explained since formation
of the cis-equatorial-axial intermediate $\mathbf{1 1}$ is moredifficult than formation of the trans-diequatorial intermediate 9. This assumption is supported by the fact that longipinan$7 \beta, 8 \alpha, 9 \alpha$-triol-1-one yields only the trans-diequatorial $7 \beta, 8 \alpha-$ acetonide when dissolved in acetone in the presence of p-toluenesulfonic acid. ${ }^{15}$

We also explored transesterification reactions of Iongi pinene 6 and its $2 \beta, 3 \beta$-dihydro derivative $\mathbf{2}$. After 2 weeks at room temperature, the 8,9-diangelate 6 transformed into the 7,9-diangelate 7 in ca. 40% yield, while $\mathbf{2}$ gave 3^{6} in ca. 40% yield. In both cases, the proportion of 8,9 -diester and 7,9-diester (60% and 40%) did not change during the following weeks and none of 7,8-diangelates could be detected. This can be explained since an angel oyl group is less susceptible to nucleophilic attack than a methylbutyroyl group and the corresponding cis-equatorial-axial intermediate 14 (Figure 1) is more difficult to form. According to the AM1 semiempirical calculations, the reaction intermediate $14\left(\Delta \mathrm{H}_{\mathrm{f}}=-200.7 \mathrm{kcal} / \mathrm{mol}\right)$ (Figure 1), which would give the 7,8 -diangelate 5 , is higher in energy by $25.9 \mathrm{kcal} / \mathrm{mol}$ than intermediate $\mathbf{1 1}\left(\Delta \mathrm{H}_{\mathrm{f}}=\right.$ $-226.6 \mathrm{kcal} / \mathrm{mol}$), which can yield the 7-angelate-8-methylbutyrate 12.

Alternatively, under acidic reaction conditions, transesterifications of 8,9-diangelates do yield 7,8-diesters. In this respect, we found that diangelate $\mathbf{2}$, when subjected to p-tol uenesulfonic acid treatment, affords the rearranged product 13. This transformation might proceed by two successive transesterification reactions to yield rastevione (4) which is known ${ }^{16}$ to afford 13 when treated with p-toluenesulfonic acid, or alternatively the angelate to tiglate isomerization might occur before ester migration.

Experimental Section

General Experimental Procedures. Column chromatography was carried out on Merck Si gel 60 (70-230 mesh ASTM) or (230-400 mesh ASTM). HPLC separations were done on a Varian Vista 5500 chromatograph using a reversedphase Micropak MCH-5-N-CAP column, i.d. 4 mm , length 150 $\mathrm{mm}+40 \mathrm{~mm}$ (pre-column), employing UV detection and a flow of $1 \mathrm{~mL} / \mathrm{min}$. Optical rotations were measured on a PerkinElmer 241 polarimeter. UV spectra were measured on a Perkin-Elmer Lambda 12 spectrometer. IR spectra were obtained on a Perkin Elmer 16F PC FT spectrophotometer, and $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $75.4 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Associates XL-300GS spectrometer while HMBC measurements were determined on a Varian Associates Unity Plus 500 spectrometer. Mass spectra were recorded at 20 eV on a Hewlett-Packard 5989-A spectrometer.

Plant Material. Specimens of S. connata were collected at km 283 of the México-M orelia federal road No. 15, in the state of Michoacán, México, during October 1995. A voucher specimen is deposited at the herbarium of the Instituto de E col ogía, A. C. Pátzcuaro, Michoacán, where Professor J erzy Rzedowski identified the plant material.

Extraction and Isolation. Air-dried roots (1.5 kg) of S. connata were extracted with hexane to afford a yellow viscous oil (10 g). A 4 g portion was subjected to column chromatography. Fractions eluted with hexane yiel ded stigmasterol ${ }^{17}$ (20 mg). The first fractions eluted with hexane-EtOAc (19:1) contained $\mathbf{1}$ and 4, the intermediate fractions contained $\mathbf{2}$ and 3, and the last fractions contained 6. The first fractions eluted with hexane-EtOAc (9:1) contained 8, and the last fractions contained 5 and 12.

Compounds 1 and $\mathbf{4}$ were purified by HPLC injecting samples of 1.6 mg in MeOH , eluting with $3: 2 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ and using UV detection at 216 nm . Each run afforded 0.8 mg of rastevione (4) ($t_{R} 52 \mathrm{~min}$) and 0.7 mg of $1\left(t_{R} 60 \mathrm{~min}\right)$. Compounds $\mathbf{2}$ and $\mathbf{3}$ were purified by column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone (99:1) to yield $\mathbf{2}(30 \mathrm{mg})$ and $\mathbf{3}$
(15 mg) as white needles, which were recrystallized from acetone-hexane. Compounds $\mathbf{5}$ and $\mathbf{1 2}$ were purified by HPLC injecting samples of 1 mg in MeOH , eluting with $3: 2 \mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}$ and using UV detection at 254 nm . Each run afforded 0.5 mg of $5\left(\mathrm{t}_{\mathrm{R}} 60 \mathrm{~min}\right)$ and 0.3 mg of $\mathbf{1 2}\left(\mathrm{t}_{\mathrm{R}} 40 \mathrm{~min}\right)$. Compound 6 was purified by injecting HPLC samples of 1.6 mg in MeOH , eluting with $3: 2 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ and using UV detection at 254 nm . Each run afforded 0.5 mg of $\mathbf{6}\left(\mathrm{t}_{\mathrm{R}} 19.6 \mathrm{~min}\right)$. Compound 8 was purified by column chromatography on Si gel eluting with 8:2 hexane-EtOAc to afford 16 mg .

Longipinane-7 $\beta, 8 \alpha, 9 \alpha$-triol-1-one 7 -angelate-8-methylbutyrate (1): colorless oil; $[\alpha]^{25}{ }_{589}+4^{\circ},[\alpha]^{25}{ }_{578}+4^{\circ},[\alpha]^{25}{ }_{546}$ $+3^{\circ},[\alpha]^{25}{ }_{436}+1^{\circ},[\alpha]^{25}{ }_{365}-17^{\circ}\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\text {max }}$ $(\log \epsilon) 216(3.94) \mathrm{nm} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3608,1733,1716,1710$, $1648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.16(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{Ang}$), $5.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8=11.3 \mathrm{~Hz}, \mathrm{H}-7), 5.39$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7,8=11.3$ and $\mathrm{J}_{8,9}=3 \mathrm{~Hz}, \mathrm{H}-8$), $3.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,9=$ $3 \mathrm{~Hz}, \mathrm{H}-9), 3.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.11=5.6 \mathrm{~Hz}, \mathrm{H}-11), 2.58(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}_{2 \alpha, 2 \beta}=19$ and J $\left.2 \beta, 3=8.5 \mathrm{~Hz}, \mathrm{H}-2 \beta\right), 2.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.31$ (1 H, sext., J $=7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{Mebu}$), $2.22(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4,11=5.6 \mathrm{~Hz}$, $\mathrm{H}-4), 2.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \alpha, 2 \beta=19$ and $\mathrm{J} 2 \alpha, 3=6 \mathrm{~Hz}, \mathrm{H}-2 \alpha), 2.04$ ($3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Me}-4 \mathrm{Ang}$), $1.88\left(3 \mathrm{H}, \mathrm{dq}, \mathrm{J}_{\mathrm{d}}=\mathrm{J}_{\mathrm{q}}\right.$ $=1.5 \mathrm{~Hz}, \mathrm{Me}-5$ Ang), 1.82 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 1.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{Mebu}$), 1.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime} \mathrm{Mebu}$), 1.10 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{Me}-5 \mathrm{Mebu}$), 1.10 (3H, s, Me-14), 1.09 (3H, d, J $3.12=7 \mathrm{~Hz}, \mathrm{Me}-12$), 1.06 (3 H , s, Me-13), 0.93 (3H, s, Me-15), $0.86(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Me}-4$ Mebu); ${ }^{13} \mathrm{C}$ NMR, see Table 1; EIMS m/z 416 [M $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}(0.2)$, 334 (1), 314 (2), 233 (24), 204 (10), 176 (4), 162 (12), 85 (47), 83 (100), 57 (56), 43 (13).

Longipin-2-ene-7 $\beta, 8 \alpha, 9 \alpha$-triol-1-one 8,9-diangelate (6): colorless oil; $[\alpha]^{25}{ }_{589}+122^{\circ},[\alpha]^{25} 578+129^{\circ},[\alpha]^{25}{ }_{546}+148^{\circ},[\alpha]^{25}{ }_{436}$ $+284^{\circ},[\alpha]^{25}{ }_{365}+706^{\circ}\left(\mathrm{C} 1.4, \mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{EtOH}) \lambda_{\max }(\log \epsilon)$ 215 (4.32), 250 (3.86) nm; IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3620,1718,1674$, $1648,1618 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.14(1 \mathrm{H}, \mathrm{qq}$, J $=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{Ang}), 6.12(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.5$ and 1.5 Hz , $\mathrm{H}-3$ Ang), $5.81\left(1 \mathrm{H}, \mathrm{ddq}^{2} \mathrm{~J}_{2,4}=\mathrm{J}_{2,11}=\mathrm{J}_{2,12}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right.$), $5.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{8.9}=3.3 \mathrm{~Hz}, \mathrm{H}-9\right), 5.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8=11.2$ and $\left.\mathrm{J}_{8,9}=3.3 \mathrm{~Hz}, \mathrm{H}-8\right), 3.93\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{7,8}=11.2\right.$ and $\mathrm{J}_{7,0 \mathrm{OH}}=3.8$ $\mathrm{Hz}, \mathrm{H}-7), 3.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2,11=1.5$ and J $4.11=7 \mathrm{~Hz}, \mathrm{H}-11), 2.81$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4,11=7 \mathrm{~Hz}, \mathrm{H}-4), 2.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5), 2.07(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J} 2,12=1.5 \mathrm{~Hz}, \mathrm{Me}-12$), 2.01 ($3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Me}-4$ Ang), 1.98 ($3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Me}-4 \mathrm{Ang}$), 1.93 (3 H , $d q, J_{d}=J_{q}=1.5 \mathrm{~Hz}, \mathrm{Me}^{2}-5$ Ang), $1.82\left(3 \mathrm{H}, \mathrm{dq}, \mathrm{J}_{\mathrm{d}}=\mathrm{J}_{\mathrm{q}}=1.5\right.$ Hz, Me-5 Ang), 1.08 (3H , s, Me-15), 1.07 (3H, s, Me-14), 1.00 (3H, s, Me-13); ${ }^{13}$ C NMR, see Table 1; EIMS m/z 430 [M] ${ }^{+}$ (0.03), 330 (7), 230 (2), 201 (19), 187 (6), 83 (100), 55 (19).

Longipin-2-ene- $7 \beta, 8 \alpha, 9 \alpha$-triol-1-one 8 -angelate- 9 -methylbutyrate (8): col orless oil; $[\alpha]^{25}{ }_{589}+58^{\circ},[\alpha]^{25} 578+67^{\circ},[\alpha]^{25} 546$ $+79^{\circ},[\alpha]^{25}{ }_{436}+95^{\circ},[\alpha]^{25}{ }_{365}+313^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 218(3.89), 248(3.47) \mathrm{nm} ; ~ I R\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3592$, 1730, 1720, 1674, 1646, $1618 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 6.12(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{Ang}), 5.82(\mathrm{lH}, \mathrm{ddq}$, $\left.\mathrm{J}_{2,4}=\mathrm{J}_{2,11}=\mathrm{J}_{2,12}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{8,9}=3 \mathrm{~Hz}\right.$, $\mathrm{H}-9), 5.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8=11.2$ and $\mathrm{J} 8.9=3 \mathrm{~Hz}, \mathrm{H}-8), 3.91(1 \mathrm{H}$, d, J $7,8=11.2 \mathrm{~Hz}, \mathrm{H}-7$), $3.04(1 \mathrm{H}$, br d, J $4,11=7 \mathrm{~Hz}, \mathrm{H}-11), 2.80$ (1H, br d, J $4,11=7 \mathrm{~Hz}, \mathrm{H}-4), 2.42(1 \mathrm{H}$, sext., J $=7 \mathrm{~Hz}, \mathrm{H}-2$ Mebu), $2.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5), 2.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.12=1.5 \mathrm{~Hz}, \mathrm{Me}$ 12), 2.02 ($3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Me}-4 \mathrm{Ang}$), 1.85 (3 H , $\mathrm{dq}, \mathrm{J}_{\mathrm{d}}=\mathrm{J}_{\mathrm{q}}=1.5 \mathrm{~Hz}$, Me-5 Ang), 1.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ Mebu), 1.50 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime} \mathrm{Mebu}$), 1.16 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{Me}-5 \mathrm{Mebu}$), 1.08 (3H, s, Me-15), 1.06 (3H, s, Me-14), 0.96 (3H, s, Me-13), 0.94 (3H, t, J $=7.5 \mathrm{~Hz}, \mathrm{Me}-4 \mathrm{Mebu}) ;{ }^{13} \mathrm{C}$ NMR, see Table 1; EIMS m/z 432 [M] ${ }^{+}(0.3), 416$ (1), 330 (9), 230 (3), 201 (17), 187 (7), 135 (4), 83 (100), 57 (24).

General Procedure for the Transesterification of 2, $\mathbf{6 , 8}, \mathbf{1 0}$, or 12. A solution of the longipinene diester (3 mg) in 3:2 $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was stored at room temperature for 2 weeks, and the solvent was removed with a N_{2} stream.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the residue from 2 showed a mixture of $\mathbf{2}$ (60\%) and $\mathbf{3}(40 \%)$, whose spectral data are in agreement with those reported. ${ }^{6}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of the residue from 6 showed a mixture of 6 (60\%) and 7 (40\%). ${ }^{1} \mathrm{H}$ NMR of 7 (admixed with 6) $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.15(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{H}-3$ Ang), 6.12 ($1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{Ang}$), 5.81 (1H,
ddq, $\left.\mathrm{J}_{2,4}=\mathrm{J}_{2,11}=\mathrm{J}_{2,12}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{8,9}=3.3\right.$ $\mathrm{Hz}, \mathrm{H}-9), 5.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,8=11.2 \mathrm{~Hz}, \mathrm{H}-7), 4.14(1 \mathrm{H}$, ddd, J 7,8 $=11.2, \mathrm{~J}_{8,9}=3.3$ and $\left.\mathrm{J}_{8,0 \mathrm{OH}}=4 \mathrm{~Hz}, \mathrm{H}-8\right), 3.09\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{4,11}\right.$ $=7 \mathrm{~Hz}, \mathrm{H}-11), 2.68(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4.11=7 \mathrm{~Hz}, \mathrm{H}-4), 2.36(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{H}-5), 2.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.12=1.5 \mathrm{~Hz}, \mathrm{Me}-12), 2.01(3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=$ 7.5 and $1.5 \mathrm{~Hz}, \mathrm{Me}-4 \mathrm{Ang}$), 1.98 ($3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5$ and 1.5 Hz , Me-4 Ang), 1.93 ($3 \mathrm{H}, \mathrm{dq}, \mathrm{J}_{\mathrm{d}}=\mathrm{J}_{\mathrm{q}}=1.5 \mathrm{~Hz}, \mathrm{Me}-5$ Ang), 1.82 $\left(3 \mathrm{H}, \mathrm{dq}, \mathrm{J}_{\mathrm{d}}=\mathrm{J}_{\mathrm{q}}=1.5 \mathrm{~Hz}, \mathrm{Me}-5 \mathrm{Ang}\right)$, $1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-14)$, 1.05 (3H, s, Me-13), 0.96 (3H, s, Me-15).

The ${ }^{1} \mathrm{H}$ NMR spectrum of the residue from 8 indicated the presence of a mixture of $\mathbf{8}(58 \%), \mathbf{1 0}(37 \%)$, and $\mathbf{1 2}(5 \%)$, that from diester 10 showed a mixture of $\mathbf{8}(52 \%)$, 10 (38\%), and 12 (10\%), and that from 12 showed a mixture of 8 (18\%), 10 (13\%), and 12 (69\%). ${ }^{1}$ H NMR of 10 (admixed with 8 and 12) $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.10(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{H}-3$ Ang), $5.81\left(1 \mathrm{H}, \mathrm{ddq}, \mathrm{J}_{2,4}=\mathrm{J}_{2,11}=\mathrm{J}_{2,12}=1.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.45$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{J}_{8,9}=3.5 \mathrm{~Hz}, \mathrm{H}-9$), $5.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,8=11 \mathrm{~Hz}, \mathrm{H}-7)$, $4.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 3.11(1 \mathrm{H}$, br d, J $4.11=7 \mathrm{~Hz}, \mathrm{H}-11), 2.68$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4,11=7 \mathrm{~Hz}, \mathrm{H}-4$), 2.58 (1 H , sext., J $=7 \mathrm{~Hz}, \mathrm{H}-2$ Mebu), $2.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5), 2.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,12=1.5 \mathrm{~Hz}, \mathrm{Me}-$ 12), 1.98 ($3 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Me}-4 \mathrm{Ang}$), 1.92 (3H, $\mathrm{dq}, \mathrm{J}_{\mathrm{d}}=\mathrm{J}_{\mathrm{q}}=1.5 \mathrm{~Hz}, \mathrm{Me}-5 \mathrm{Ang}$), 1.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{Mebu}$), 1.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime} \mathrm{Mebu}$), 1.25 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{Me}-5 \mathrm{Mebu}$), 1.11 (3H, s, Me-15), 1.00 (3H, s, Me-14), 0.92 (3H, s, Me-13), 0.92 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Me}-4 \mathrm{Mebu}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ was in agreement with that reported. ${ }^{8}$

Treatment of $\mathbf{2}$ with p-Toluenesulfonic Acid. A solution of $\mathbf{2}(44 \mathrm{mg})$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ (10 mL) was treated with p-toluenesulfonic acid (9 mg). The reaction mixture was refluxed for 1 h using a Dean-Stark trap, concentrated to a small volume, diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, filtered, and evaporated giving $\mathbf{1 3}$ ($30 \mathrm{mg}, 71 \%$) as a yellow oil, which was purified by silica gel chromatography. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of an authentic sample. ${ }^{16}$

Molecular Modeling Calculations. Minimum energy structures were generated using MMX force-field cal culations which is a derived version of the MM2 program ${ }^{10}$ as implemented in the PCMODEL program V 6.00. ${ }^{18}$ Conformational search for the ester side chains and the hydroxyl hydrogens were carried out by analysis of the rotational energy barrier plots in combination with $\mathrm{E}_{\text {ммх }}$ convergence, using the dihedral driver option. The π-system cal culations were set for the restricted Hartree-Fock and full self-consistent field options.

The structures were loaded into the PC Spartan plus software package, ${ }^{19}$ reminimized using SYBYL force field ${ }^{11}$ and submitted to the AM1 semiempirical calculation routine. 12,13

Acknowledgment. We are grateful to I sabel Chávez U ribe (Instituto de Química, Universidad Nacional Autónoma de México) for the HMBC spectral data and to CoNaCyT (México) for financial support.

References and Notes

(1) Hernández, L. R.; Catalán, C. A. N.; J oseph-Nathan, P. Rev. Acad. Colomb. Cienc. 1998, 22, 229-279; available at http://www. accefyn.org.co/PubliAcad/Periodicas/83/83(229)/83(nathan).html.
(2) Román, L. U.; del Río, R. E.; Hernández, J. D.; J oseph-Nathan, P.; Zabel, V.; Watson, W.'H. Tetrahedron 1981, 37, 2769-2778.
(3) Román, L. U.; Hernández, J . D.; Castañeda, R.; Cerda, C. M.; J osephNathan, P. Phytochemistry 1989, 28, 265-268.
(4) J oseph-Nathan, P.; Cerda-García-Rojas, C. M.; Castrejón, S.; Román, L. U.; Hernández, J . D. Phytochem. Anal. 1991, 2, 77-79.
(5) Cerdá-García-Rojas, C. M.; Sánchez-Arreola, E.; J oseph-Nathan, P.; Román, L. U.; Hernández, J. D. Phytochemistry 1993, 32, 1219-1223.
(6) Sánchez-Arreola, E.; Cerda-García-Rojas, C. M.; J oseph-N athan, P.; Román, L. U.; Hernández, J. D. Phytochemistry 1995, 39, 853-857.
(7) Román, L. U.; M orán, G.; Hernández, J. D.; Cerda-García-Rojas, C. M.; J oseph-Nathan, P. Phytochemistry 1995, 38, 1437-1439.
(8) Sánchez-Arreola, E.; Cerda-García-Rojas, C. M.; J oseph-N athan, P.; Román, L. U.; Hernández, J. D. Phytochemistry 1999, 52, 473-477.
(9) Amaro, J. M.; Adrián, M.; Cerda, C. M.; J oseph-Nathan, P. Phytochemistry 1988, 27, 1409-1412.
(10) Burket, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph 177; American Chemical Society: Washington, DC, 1982.
(11) Clark, M.; Cramer, R. D., III; Van Opdenbosch N. J. Comput. Chem. 1989, 10, 982-1012.
(12) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902-3909.
(13) Clark, T. A Handbook of Computational Chemistry; J ohn Wiley \& Sons: New York, 1985; pp 141-232.
(14) J oseph-Nathan, P.; Cerda, C. M.; del Río, R. E.; Román, L. U.; Hernández, J. D. J. Nat. Prod. 1986, 49, 1053-1060.
(15) Román, L. U.; del Río, R. E.; Hernández, J. D.; Cerda, C. M.; Cervantes, D.;'Castañeda, R.; J oseph-Nathan, P. J . Órg. Chem. 1985, 50, 3965-3972.
(16) Román, L. U.; Hernández, J . D.; del Río, R. E.; Bucio, M. A.; Cerda-García-Rojas, C. M.; J oseph-Nathan, P.J. Org. Chem. 1991, 56, 19381940.
(17) Wright, J. L. C.; Mclnnes, A. G.; Shimizu, S.; Smith, D. G.; Walter, J. A.; Idler, D.; Khalil, W. Can. J . Chem. 1978, 56, 1898-1903.
(18) PCMODEL Molecular Modeling Software is available from Serena Software, Box 3076, Bloomington, IN 47402-3076.
(19) PC Spartan Plus molecular modeling program is available from Wavefunction, Inc., 18401 Von Karman, Suite 370, Irvine, CA 92612.

NP990210T

[^0]: * To whom correspondence should be addressed. Tel.: (+52) 5747-7112.

 Fax: (+52) 5747-7113. E-mail: pjoseph@nathan.chem.cinvestav.mx.
 † Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional.
 ${ }^{\ddagger}$ Universidad Michoacana de San Nicolás de Hidalgo.

